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In this paper transient waves caused by a line heat source moving with a
uniform velocity inside isotropic homogeneous thermoelastic half-space are
studied under the GL model of generalized thermoelasticity. The problem is
reduced to the solution of three differential equations by introducing the elastic
vector potential and the thermoelastic scalar potential. Using Laplace and
Fourier transforms solutions are obtained in transforms domain. Applying
inverse transforms approximate solutions of the displacement at the boundary
valid in the small time range are given. Also the approximate region valid for
the solutions is given and two special cases, (i) the source is motionless and (ii)
the relaxation times vanish, are studied. Numerical evaluations are presented for
the medium of copper.
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1. INTRODUCTION

The classical linear theory of thermoelasticity, which is based in part on the
assumption that the heat flux vector satisfies Fourier heat conduction law,
predicts finite propagation speeds for elastic waves but an infinite speed for
thermal disturbance. This is physically unrealistic. The generalized thermo-
elastic theory proposed by Lord and Shulman [1] and Green and Lindsay
[2] (here called LS and GL theories, respectively) have aroused much



interest in recent years. The LS theory introduced a single time constant to
dictate the relaxation of thermal propagation. This theory is based on a new
law of heat conduction to replace Fourier’s law. The heat equation is a
hyperbolic one that ensures finite speed of propagation for heat and elastic
waves. In the GL theory, thermal and thermalmechanical relaxation are
governed by two different time constants and the temperature rates are
considered among the constitutive variables. This model admit second
sound even without violating the classical Fourier’s law. The two theories
are structurally different from one other, and one cannot be obtained as a
particular case of the other. Various problems characterizing these two
theories have been investigated, and reveal some interesting phenomena.
Brief reviews of this topic have been reported by Chandrasekharaiah [3, 4].

Heat source acting in an elastic body is widely used in engineering
involving materials processing, case hardening and boiling nucleation etc.
This kind of problem is very interesting in mathematic and important in
physics. Sarbani and Amitava [5] studied the transient disturbances in half-
space due to moving internal heat source under LS model and obtained the
solution for the displacements in the transform domain. Under GL theory,
Chandrasekharaiah and Srikantiah [6] have studied the cases of both
continuous and impulsive point heat sources in an unbounded body
and obtained small time solutions with the aid of Laplace transforms.
Chandrasekharaiah and Murthy [7] have studied cylindrical waves due to
a continuous line heat source in an unbounded body and have obtained
small-time solutions by employing the Laplace and Hankel transform.
Ignaczak and Mrowka-Matejewska [8] have considered one-dimensional
waves produced by an infinite body and have presented a closed-form
solution for the displacement-heat flux formulation of the problem.
Hetnarski and Ignaczak [9] have studied a plane heat sources in a half-
space in great detail and have presented closed form solutions.

In this paper, transient waves created by a line heat source that sud-
denly starts moving with a uniform velocity inside isotropic homogeneous
thermoelastic half-space are studied with thermal relaxation of the type of
Green and Lindsay. The source moves parallel to the boundary surface is
stress free. The problem is reduced to the solution of three differential
equations, one involving the elastic vector potential, and the other two
coupled, involving the thermoelastic scalar potential and the temperature.
The problem is solved using Laplace and Fourier transforms. The expres-
sion for displacements valid in the small time range are obtained in trans-
forms domain and the displacements are calculated on the boundary by
using inverse transforms for small time. The approximate region valid for
the solution is given and two special cases are considered. Also the results
are graphically described for the medium of copper.
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2. FORMULATION OF THE PROBLEM

Consider a linear, homogenous and isotropic thermoelastic continuum
occupying the region x2 \ − h which is in a quiescent state, and the surface
x2 \ − h is stress free. A line source suddenly starts moving inside the
medium at a depth h below the free surface with a uniform velocity in the
x1 direction. The line source is parallel to the x3 axis so that all quantities
are independent of x3, and the third component u3 of the displacement
vector vanishes. When all body forces are neglected the governing equa-
tions are:

(1) Strain-displacement relation:

2yij=ui, j+uj, i, i, j=1, 2 (1)

where ui (i=1, 2) is the component of displacement vector, yij (i, j=1, 2)
is the component of strain tensor.

(2) Stress-displacement relation:

sij=m(ui, j+uj, i)+luk, kdij − c 11+y1
“

“t
2 hdij, i, j=1, 2 (2)

where sij (i, j=1, 2) is the component of stress tensor, l, m are Lame’s
constants, h is the absolute temperature, y1 is a relaxation constant with the
dimensions of time and c=(3l+2m) at, with at being the coefficient of
linear thermal expansion.

(3) Heat conduction equation:

rc 11+y2
“

“t
2 ḣ+h0cu̇i, i − Q=kh, ii, i=1, 2 (3)

where r is mass density, c the specific heat at constant strain, k is the
thermal conductivity, y2 is another relaxation time and h0 is a reference
temperature and Q is heat source.

(4) Equation of motion

mui, jj+(l+m) uj, ij − c 11+y1
“

“t
2 h, i=rüi, i, j=1, 2 (4)

where parameters y1, y2 are characteristic of this theory, and in order to
hold the entropy production inequality, they must satisfy the inequality
y1 \ y2 \ 0. If y1=y2=0, this theory reduces to classical coupled ther-
moelasticity.
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(5) Initial conditions and boundary conditions:

Initial conditions are

ui=0, h=0, at t [ 0 in x2 \ − h
u̇i=0, ḣ=0, at t [ 0 in x2 \ − h

ˇ i=1, 2 (5)

The stress-free boundary conditions are

s12=s22=0 on x2=−h for t \ 0 (6)

The regularity conditions are

h, ui Q 0 as x2 Q ., x1 Q ± . (7)

The thermal boundary condition at x2=−h to be imposed is

h=0 (8)

Introducing the scalar and vector potentials f, (0, 0, k) and defined by:

˛u1=f, 1+k, 2

u2=f, 2 − k, 1

(9)

where

f=f(x1, x2, t), and k=k(x1, x2, t). (10)

Taking divergence and curl of equation of motion gives

N2f − m1h − y1m1 ḣ=
1

C2
L

f̈ (11)

N2k=
1

C2
T

k̈ (12)

where

N2=
“

2

“x2
1

+
“

2

“x2
2

, m1=
c

l+2m
, CL==l+2m

r
, CT==m

r

From Eq. (3) we can obtain

k N2h=rc 11+y2
“

“t
2 ḣ+ch0 N2ḟ − Q (13)
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In order to nondimensionalize Eqs. (11)–(13), let us define the following set
of dimensionless variables:

x̄i=
xi

CTw
, ūi=

ui

CTw
, h̄=m1h, f̄=

f

(CTw)2 , k̄=
k

(CTw)2 , t̄=
t
w

,

ȳ1=
y1

w
, ȳ2=

y2

w
, Q=

m1wQ
rc

, s̄ij=
sij

m
,

(14)

where

w=
k

rcC2
T

(15)

Equations (11)–(13) become

Nb 2f̄ − h̄ − ȳ1 ḣ̄=
1
b2 f̈̄ (16)

Nb 2k̄=k̈̄ (17)

Nb 2h̄=(h̄+ẏ̄2 ḧ̄)+ē (Nb 2ḟ̄) − Q̄ (18)

where

Nb 2=
“

2

“x̄2
1

+
“

2

“x̄2
2

, b=
CL

CT
, ē=

ch0m1

rc
(19)

and e is the coupling parameter. The bar over the quantity will be omitted
below for convenience. Also we shall write x, y for x1, x2 and u, v for u1, u2

respectively.
The Laplace transform of a function A(x, y, t) with respect to t is

defined as

L(A(x, y, t))=F
.

0
e−ptA(x, y, t) dt=Ã(x, y, p)

and the Fourier transform of Ã with respect to x is defined as

F(Ã(x, .y, p))=F
.

−.

e−itxÃ(x, y, p) dx=Ag(t, .y, p)
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Inverting the transforms give

A(x, y, t)=L−1 3 1
2p

F
.

−.

Ag(t, y, p) e itx dt4

where L−1 denote the inverse Laplace transform.
Applying Laplace and Fourier transforms to Eqs. (16)–(18) and using

the initial conditions given in Eqs. (5), we have

1 d2

dy2 − t2 −
p2

b2
2 fg=hg+y1 phg (20)

1 d2

dy2 − t2 − p22 kg=0 (21)

1 d2

dy2 − t2 − p(1+py2)2 hg − ep 1 d2

dy2 − t22 fg=−Qg (22)

The moving source is located at the origin, at time t=0+ and starts moving
along the positive x-axis, with uniform velocity V. The source is assumed in
the form (the same as in [5])

Q=Q0d(x − Vt) d(y) H(t), Qg=Q0d(y)/(p+itV). (23)

From Eq. (19) we can obtain

hg=
1

1+y1 p
1 d2

dy2 − t2 −
p2

b2
2 fg (24)

3. SOLUTIONS OF THE PROBLEM IN TRANSFORMS DOMAIN

Eliminating hg from Eqs. (20) and (22), we get a fourth-order differ-
ential equation in fg

5D2 −1p2

b2+p(1+py2+e(1+py1))2 D+
p3(1+py2)

b2
6 fg

=−
Q0(1+py1) d(y)

p+itV
(25)

where

D —
d2

dy2 − t2 (26)
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The solution for fg, under the regularity condition is given by

fg=˛A1e−a1y+A2e−a2y+A3ea1y+A4ea2y, −h < y < 0

B1e−a1y+B2e−a2y, y > 0
(27)

The solution of Eq. (21) satisfying regularity conditions is

kg=˛C1e− (t
2+p2)1/2 y+C2e (t

2+p2)1/2 y, −h < y < 0

De− (t
2+p2)1/2 y, y > 0

(28)

where

a2
1, 2=t2+

1
2
5p2

b2+p(1+py2+e(1+py1))6

±
1
2
51p2

b2+p(1+py2+e(1+py1))2
2

−
4p3(1+py2)

b2
6

1
2

(29)

Both a1, 2 are assumed to be real and positive.
The displacement fields ug, vg are

ug=˛ it(A1e−a1y+A2e−a2y+A3ea1y+A4ea2y) − C1b1e−b1y+C2b1eb1y,

−h < y < 0

it(B1e−a1y+B2e−a2y) − Db1e−b1y, y > 0

(30)

vg=˛ − a1A1e−a1y − a2A2e−a2y+a1A3ea1y+a2A4ea2y − it(C1e−b1y+C2eb1y),

−h < y < 0

− a1B1e−a1y − a2B2e−a2y − itDe−b1y, y > 0

(31)

where

b1=(t2+p2)1/2 (32)

The stresses are transformed as

sg
xx=p2fg − 2

d2f

dy2+2it
dkg

dy
(33)

sg
yy=(p2+2t2) fg − 2it

dkg

dy
(34)

sg
xy=2it

dfg

dy
+

d2kg

dy2 +t2kg (35)
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Moreover from the stress free boundary conditions, we have

sg
xy=sg

yy=0 on y=−h (36)

Further, since the stress components are continuous across y=0, it follows
that

fg,
dfg

dy
,

d2fg

dy2 , kg,
dkg

dy
,

d2kg

dy2 (37)

are all continuous across y=0.
To obtained the jump discontinuity due to the presence of d(y) in Qg,

Eq. (22) is integrated from y=−g to y=g, (g > 0) and finally made g to
tend to 0+

d3fg

dy3
:
y Q 0 ±

=
dhg

dy
:
y Q 0 ±

=−
Q0(1+py1)

p+itV
(38)

Using conditions (37), (38), we obtain a set of seven equations involving
the nine constants A1, A2, A3, A4, B1, B2, C1, C2, D

A1+A2+A3+A4 − B1 − B2=0 (39)

A1a1+A2a2 − A3a1 − A4a2 − B1a1 − B2a2=0 (40)

A1a2
1+A2a2

2+A3a2
1+A4a2

2 − B1a2
1 − B2a2

2=0 (41)

C1+C2 − D=0 (42)

− C1b1+C2b1+Db1=0 (43)

C1b2
1+C2b2

1 − Db2
1=0 (44)

− A1a3
1 − A2a3

2+A3a3
1+A4a3

2+B1a3
1+B2a3

2=
Q0(1+py1)

p+itV
(45)

From equations above we can see that the Eq. (42) is the same as Eq. (44),
so there has six absolute equations.

The condition (36) imply

d(A1ea1h+A2ea2h+A3e−a1h+A4e−a2h)+2itb1C1eb1h+2itb1C2eb1h=0
(46)

2it( − a1A1ea1h − a2A2ea2h+a1A3e−a1h+a2A4e−a2h)+dC1eb1h+dC2eb1h=0
(47)
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where

d=p2+2t2 (48)

using Eq. (24), condition (8) reduces to

A1(a2
1 − b2) ea1h+A2(a2

2 − b2) ea2h+A3(a2
1 − b2) e−a1h+A4(a2

2 − b2) e−a2h=0
(49)

where

b2=t2+(p2/b2) (50)

From Eqs. (39)–(47) and (49), we obtain

A1=−K{e (a2 − a1) h(a1+a2)[d2(a1 − a2) − 4t2b1a1a2+4t2b1b2]

+8a1b1(a2
2 − b2)}/a1De (a1+a2) h (51)

A2=−K{e (a2 − a1) h(a1+a2)[d2(a1 − a2) − 4t2b1a1a2+4t2b1b2]

+8a2b1(a2
1 − b2)}/a2De (a1+a2) h (52)

A3=
K

2a1
, A4=−

K
2a2

(53)

B1=A1+A3, B2=A2+A4 (54)

C2=0, C1=D=ide−b1h(A1ea1h+A2ea2h+A3e−a1h+A4e−a2h)/2tb1

(55)

where

K=
Q0(1+py1)

2(a2
1 − a2

2)(p+itV)
(56)

D=(a1 − a2){d2(a1+a2) − 4t2b1a1a2 − 4t2b1b2} (57)

The surface displacements are

ug|y=−h=
2ip2b1tQ0(1+py1)

(p+itV) D
(e−a1h − e−a2h), (58)

vg|y=−h=
p2dQ0(1+py1)

(p+itV) D
(e−a1h − e−a2h). (59)
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4. SOLUTIONS VALID FOR SMALL TIME REGION

To the first order of approximation in e, a2
1 and a2

2 may be written as

a2
1=t2+

p2

b2 −
p2(1+py1)
b2(1+py3)

e (60)

a2
2=t2+p+p2y2+

p(1+py1)(1+py2)
1+py3

e (61)

where

y3=y2 −
1
b2 (62)

For a short time approximation to the displacement components, we
expand a1, a2, b1 in terms of power of p, and consider relevant terms as
p Q .. Then

a1 ’
pn1

b
+

n3e

2by2
3n1

+
4b2t2y2

3+n3e2(3y1+y3) − 4ey3(n3+b2t2y1y2
3)

8by4
3pn3

1

(63)

a2 ’ p `y2 n2+
y2

3+n4e

2y2
3 `y2 n2

+
4y2y3[y3

3t2 − (n4 − y2
3) e] − (y2

3+n4e)2

8py2 `y2 n2y4
3

(64)

b1 ’ p+
t2

2p
(65)

where

n1==1 −
y1e

y3
, n2==1+

y1e

y3
, n3=y1 − y3, n4=y1y3+y2y3 − y1y2

(66)

It is clear from Eqs. (63)–(65) that there are three waves with velocities
b/n1, 1/`y2 n2, 1 respectively representing the dilatational waves, the
thermalelastic waves and the transverse elastic waves.

For a small time, using Eqs. (63)–(65) in (58), (59)

ug|y=−h ’
2iQ0t(1+py1)(e−a1h − e−a2h)

(p+itV) p3(L2
1+4t2L2

2)
(67)

vg|y=−h ’
Q0(1+py1)(e−a1h − e−a2h)
(p+itV) p2(L2

1+4t2L2
2)

(68)
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where

L2
1==1 1

b2+y2+y1e2
2

−
4y2

b2 , L2
2=

n1 − bn2 `y2

b5
(69)

Finally, using software (MS Mathematica 4.0) we can take inverse
Laplace and Fourier transform from Eqs. (67) and (68), gives

u|y=−h
x \ 0

% −
`2p Q0

4L3
1L2V3

[e−c2hH(t − c1h) f1 − e−c4hH(t − c3h) f2] (70)

u|y=−h
x < 0

% −
`2p Q0

4L3
1L2V3

3e−c2h 5H 1 t − c1h+
x
V
2 f3+H(t − c1h) f5

6

− e−c4h 5H 1 t − c3h+
x
V
2 f4+H(t − c3h) f6

64 (71)

v|y=−h
x \ 0

%
`2p Q0

2L3
1V2

[e−c2hH(t − c1h) f7 − e−c4hH(t − c3h) f8] (72)

v|y=−h
x < 0

%
`2p Q0

2L3
1V2

3e−c2h 5H 1 t+
x
V

− c1h2 f9+H(t − c1h) f11
6

− e−c4h 5H 1 t+
x
V

− c3h2 f10+H(t − c3h) f12
64 (73)

where

c1=
n1

b
, c2=

n3e

2by2
3n1

, c3=`y2 n2, c4=
y2

3+n4e

2y2
3 `y2 n2

(74)

f1(2)=−4L2(2L2+L1Vy1) e
L1(c1(3)hV − tV − x)

2L2 +[8L2
2 − 4L1L2V(c1(3)h − t − y1)

+L2
1V2(c1(3)h − t)(c1(3)h − t − 2y1)] e

−
L1x

2L2 (75)

f3(4)=4L2( − 2L2+L1Vy1) e
L1(c1(3)hV − tV − x)

2L2 +4L2(2L2+L1Vy1) e
−

L1(c1(3)hV − tV − x)

2L2

+8L1L2(c1(3)hV − tV − Vy1 − x) (76)

f5(6)=−4L2(2L2+L1Vy1) e
−

L1(c1(3)hC − tV − x)

2L2 +[8L2
2 − 4L1L2V(c1(3)h − t − y1)

+L2
1V2(c1(3)h − t)(c1(3)h − t − 2y1)] e

L1x

2L2 (77)

Transient Disturbance in a Half Space Under Thermoelasticity 309



f7(8)=( − 2L2+L1Vy1) e
L1V(c1(3)hV − tV − x)

2L2 +[2L2+L1V(c1(3)h − t − y1)] e
−

L1x

2L2

(78)

f9(10)=(2L2+L1Vy1) e
−

L1(c1(3)hV − tV − x)

2L2 − (2L2 − L1Vy1) e
L1(c1(3)hV − tV − x)

2L2

+2L1(c1hV − tV − Vy1 − x) (79)

f11(12)=−(2L2+L1Vy1) e
−

L1(c1(3)hV − tV − x)

2L2 +[2L2 − L1V(c1(3)h − t − y1)] e
L1x

2L2

(80)

It is clear that the surface displacements for small time consist of dila-
tational waves propagating with velocity (1/c1) and a thermalelastic wave
moving with velocity (1/c3). Also the waves are attenuated by exponential
factors depending on e, y1 and y2.

If the velocity of heat source V Q 0, the displacements can be obtained using
the laws of L’Hospital limits. Here x/V Q . results in H(t−c1(3)h+x/V) Q 0.
The displacement expressions (70)–(73) tends to the expressions below
when V approaches the limit 0:

u|y=−h Q
`2p Q0

24L2
2

[e−c2hf13H(t − c1h) − e−c4hf14H(t − c3h)] (81)

v|y=−h Q
`2p Q0

8L1L2

[e−c2hH(t − c1h) f15 − e−c4hH(t − c3h) f16] (82)

where

f13(14)=(t − c1(3)h)2 (c1(3)h − t − 3y1)5− sinh 1L1x
2L2

2+cosh 1L1x
2L2

2 Sign[x]6

(83)

f15(16)=(t − c1(3)h)(t − c1(3)h+2y1)5− cosh 1L1x
2L2

2+sinh 1L1x
2L2

2 Sign[x]6

(84)

and

Sign[x]=˛− 1 x < 0

0 x=0

1 x > 1

(85)
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Obviously, the x-component of the displacement is antisymmetric with
respect to x and the y-component of the displacement is symmetrical with
respect to x.

5. ANALYSIS OF THE RESULTS

Here we are interested in the displacements at the boundary. From
Eqs. (63)–(65) we can see there must be three waves representing the dila-
tational waves, the thermalelastic waves and the transverse elastic waves
respectively. But we can see from the Eqs. (70)–(73) that there only exist
two waves at the boundary. The third solution must be zero at the bound-
ary in order to satisfy the thermal boundary condition and the stress-free
boundary conditions.

We consider the short-time approximation solution of the problem.
However, the time should be long enough to waves reach the boundary.
Also, the more remote points at the boundary require longer times to reach
them, therefore the approximate solutions hold in the limited space. Thus
the inequality below must be hold:

x [ 1 1
c3

+V2 t for x \ 0 (86)

x \ −1 1
c3

− V2 t for x < 0 (87)

relation (86) and (87) give the approximate ranges of validity of solutions.
If the points out of the approximate range of validity of solutions the
displacements vanish and this region remains undisturbed.

Here we consider some limited case:

(I) The source is motionless, but it is switched on at t=0. This cor-
responds to V=0 in equation (23). Obviously the solutions above cannot
satisfy the case when V=0. In this case Eqs. (67) and (68) degenerate into
equations below:

ug|y=−h ’
2iQ0t(1+py1)(e−a1h − e−a2h)

p4(L2
1+4t2L2

2)
(88)

vg|y=−h ’
Q0(1+py1)(e−a1h − e−a2h)

p3(L2
1+4t2L2

2)
(89)
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taking inverse Laplace and Fourier transform from Eqs. (88) and (89),
gives

u|y=−h %
`2p Q0

24L2
2

[e−c2hf13H(t − c1h) − e−c4hf14H(t − c3h)] (90)

v|y=−h %
`2p Q0

8L1L2

[e−c2hH(t − c1h) f15 − e−c4hH(t − c3h) f16] (91)

Obviously the results coincide with that obtained when V Q 0.

(II) The relaxation times y1 Q 0, y2 Q 0 the conventional coupled
thermoelastic theory will be obtained. Here the displacements in transforms
domain can be obtained as below:

ug|y=−h ’
2iQ0tb5(e−a1h − e−a2h)

p4(b3+4t2)
(92)

vg|y=−h ’
Q0(1+py1) b5(e−a1h − e−a2h)

p3(b3+4t2)
(93)

taking inverse Laplace and Fourier transforms from Eqs. (92) and (93),
gives

u|y=−h %
`2p Q0b5

24
5e

−hbe

2 f17H 1 t −
h
b
2− f18

6 (94)

v|y=−h %
`2p Q0b3

`b

8
5e

−hbe

2 H 1 t −
h
b
2 f19 − f20

6 (95)

where

f17=1 t −
h
b
23 5− cosh 1xb `b

2
2 Sign[x]+sinh 1xb `b

2
26 (96)

f18=
1

120
5cosh 1xb `b

2
2 Sign[x] − sinh 1xb `b

2
26

×32h `t

`p
(h4+28h2t+132t2) e

−h2

4t

−51 − erf 1 h

2 `t
26(h6+30h4t+180h2t2+120t3)4 (97)
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f19=1 t −
h
b
22 5− cosh 1xb `b

2
2+sinh 1xb `b

2
2 Sign[x]6 (98)

f20=
1
12

5− cosh 1xb `b

2
2+sinh 1xb `b

2
2 Sign[x]6

×3−
2h `t

`p
(h2+10t) e

−h2

4t+51 − erf 1 h

2 `t
26(h4+12h2t+12t2)4

(99)

Due to the presence of the error functions in the expressions of f18 and f20,
we can conclude that the conventional thermoelastic theory predicts an
infinite velocity of heat propagation.

6. NUMERICAL RESULTS

Consider the material medium as that of copper. The parameters
below are used:

l=7.55 × 1010 kg · m−1 · s−2,

Ce=3.845 × 102 m2 · K−1 · s−2

m=3.86 × 1010 kg · m−1 · s−2,

at=17.87 × 10−6 · K−1,

r=8.96 × 103 kg · m−3,

h0=300 K,

k=3.98 × 102 kg · K−1 · m · s−3,

y1=0.5363 × 10−12 s,

y2=0.4348 × 10−12 s.

Thus the nondimensional quantities in the present analysis will be
b=1.98896, e=0.0168, y1=0.02, y2=0.016214 and we take the non-
dimensional quantities h=0.2, V=0.15, Q0=0.1.

At the boundary surface, y=−h, the distributions of displacements
versus time are shown in Figs. 1 and 3 at different points x=−0.6, 0.0, 0.6.
Figure 1 shows the x-component of the displacement solution. We can see
that the displacement increases monotonically with t for x \ 0 and decrease
monotonically with t for x < 0 at small time range. The displacement
attains its maximum value at the point x=0.0. Due to the existence of the
step function in the expression of displacements at small time range, the
displacements remain undisturbed for time t [ c3h (0.0254). Figure 3 shows
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Fig. 1. Displacment at different points at the boundary versus time.

the y-component of the displacement solution. We can see that the displa-
cement increases monotonically with t for all points and attains its
maximum value at location x=0.0. Figures 2 and 4 depict that the displa-
cements profile at the boundary at different time, we can see the displace-
ments always starts form the zero value and terminates at the zero value.
Also we can see that out of the approximate range of validity of solutions
(e.g., for t=0.05, the approximate range is − 0.39 [ x [ 0.4) the displa-
cements vanish and this region remains undisturbed.

Fig. 2. Profile of displacement at the boundary at different time.
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Fig. 3. Displacment at different points at the boundary versus time.

Figures 5 and 6 give the profile of displacement at the boundary at
t=0.1 for GL theory and conventional theory. We can see that the relaxa-
tion times have salient effect to the distribution of displacement at small
time range. The two figures show that the relaxation times make the
displacement smaller than the displacements corresponding to the conven-
tional theory. With the increase of time t, the effect of relaxation time will
decrease. So if the considered time is much longer than the relaxation
times, the conventional thermoelastic theory can describe the problem
exactly.

Fig. 4. Profile of displacement at the boundary at different time.
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Fig. 5. Profile of displacement at the boundary at t=0.1 for GL theory and con-
ventional theory.

Figures 7 and 8 compare the displacements by not keeping t in
Eqs. (63)–(65) with those obtained by keeping t in Eqs. (63)–(65). We can
see that the effect of t is very tiny. So we only consider two terms in
Eqs. (63)–(64) and one term in Eq. (65). This will greatly reduce the cal-
culation time.

Fig. 6. Profile of displacement at the boundary at t=0.1 for GL theory and
conventional theory.
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Fig. 7. Effect of the small terms on the displacement at time t=0.15.

7. CONCLUSION

Transient waves created by a line heat source that suddenly starts
moving with a uniform velocity inside isotropic homogeneous thermo-
elastic half-space are studied with thermal relaxation of the type of Green
and Lindsay. The problem is reduced to the solution of three differential
equations, one involving the elastic vector potential, and the other two
coupled, involving the thermoelastic scalar potential and the temperature.

Fig. 8. Effect of the small terms on the displacement at time t=0.15.

Transient Disturbance in a Half Space Under Thermoelasticity 317



Using joint Laplace and Fourier transforms the problem is solved. The
expression for displacements valid in the small time range are obtained in
transforms domain and the displacements are calculated at the boundary
by using inverse transforms for small time. Also the displacements in the
transform domain indicate the existence of dilatational, transverse and
thermalelastic waves inside the medium and the velocities of the three kinds
of waves are given in this paper. The approximate region valid for the
solution is given and two special cases are considered. Also the results are
graphically described for the medium of copper. The results show that the
relaxation times have salient effect to the distribution of displacement at
small time range.
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